Scale Prediction and Inhibition for Oil and Gas Production at High Temperature/High Pressure
نویسندگان
چکیده
With the advance of new exploration and production technologies, oil and gas production has gone to deeper and tighter formations than ever before. These developments have also brought challenges in scale prediction and inhibition, such as the prevention of scale formation at high temperatures (150–200 C), pressures (1,000–1,500 bar), and total dissolved solids (TDS) (>300,000 mg/L) commonly experienced at these depths. This paper will discuss (1) the challenges of scale prediction at high temperatures, pressures, and TDS; (2) an efficient method to study the nucleation kinetics of scale formation and inhibition at these conditions; and (3) the kinetics of barite-crystal nucleation and precipitation in the presence of various scale inhibitors and the effectiveness of those inhibitors. In this study, nine scale inhibitors have been evaluated at 70–200 C to determine if they can successfully prevent barite precipitation. The results show that only a few inhibitors can effectively inhibit barite formation at 200 C. Although it is commonly believed that phosphonate scale inhibitors may not work for high-temperature inhibition applications, the results from this study suggest that barite-scale inhibition by phosphonate inhibitors was not impaired at 200 C under strictly anoxic condition in NaCl brine. However, phosphonate inhibitors can precipitate with Ca2þ at high temperatures and, hence, can reduce efficiency. In addition, the relationships of scale inhibition to types of inhibitors and temperature are explored in this study. This paper addresses the limits of the current predition of mineral solubility at high-temperature/high-pressure (HT/HP) conditions and sheds light on inhibitior selection for HT/HP application. The findings from this paper can be used as guidelines for applications in an HT/HP oilfield environment.
منابع مشابه
An In-depth Study of Calcium Carbonate Scale Formation and Inhibition
A fundamental study of scale formation of calcium carbonate (CaCO3) for producing oil wells has been carried out. This article presents the study of the prediction of salt deposition in two different synthetic formation waters and investigates the effects of temperature and pressure on calcium carbonate precipitation. The dependence of the induction period of the precipitation of calcium carbon...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملInvestigation of Barium Sulfate Precipitation and Prevention Using Different Scale Inhibitors under Reservoir Conditions
In this work, scaling tendency and amount of precipitation of barium sulfate (BaSO4) were determined; the process is depending on temperature, pressure and mixing ratio of injection and formation of waters. Results showed that BaSO4 precipitation is largely dependent on mixing ratio. Temperature and pressure had no influence on BaSO4 precipitation. Different sca...
متن کاملMinimum Miscibility Pressure Using the Multiple Mixing-cell Combined with the PC-SAFT Equation of State
The minimum miscibility pressure (MMP) is one of the crucial and substantial parameters in the gas injection projects for enhanced oil recovery (EOR). This parameter indicates the minimum pressure at constant temperature and composition conditions for reaching 100 percent of the oil production recovery which leads to a huge economic income. Therefore, an inaccurate prediction of the MMP may lea...
متن کاملEffects of pH and Temperature on Oilfield Scale Formation
Water flooding is one of the most influential methods for pressure maintenance and enhanced oil recovery. However, water flooding is likely to develop the formation of oilfield scale. Scale formation in reservoirs, due to the mixing of injection water and formation water, could cause formation damage and production limit. Therefore, it is necessary to simulate the compatibility of brine and inj...
متن کامل